Separating hyperplanes of edge polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximin, Discounting, and Separating Hyperplanes

Is Hartwick’s rule a necessary condition for maximin in Solow’s [1974] model? Until recently this has been an open question; this is surprising given the prominence of the model. Cairns and Yang [2000] as well as Withagen, Asheim and Buchholz (this issue) claim that the answer is in the affirmative and claim to provide a formal proof. The latter team argues that the proof by the former is not c...

متن کامل

Separating Points by Parallel Hyperplanes - Characterization Problem

This paper deals with partitions of a discrete set S of points in a d-dimensional space, by h parallel hyperplanes. Such partitions are in a direct correspondence with multilinear threshold functions which appear in the theory of neural networks and multivalued logic. The characterization (encoding) problem is studied. We show that a unique characterization (encoding) of such multilinear partit...

متن کامل

2 Separating Hyperplanes 3 Banach–mazur Distance

We’ll use the above result to show why the polar of the polar of a convex body is the body itself. Recall that for a convex body K, we had defined its polar K∗ to be {p|k · p ≤ 1∀k ∈ K}. Theorem 2 Let K be a convex body. Then K∗∗ = K. Proof We know that K∗ = {p|k · p ≤ 1∀k ∈ K}. Similarly K∗∗ = {y|p · y ≤ 1∀p ∈ k∗}. Let y be any point in K. Then, by the definition of the polar, for all p ∈ K∗ w...

متن کامل

Extremal Edge Polytopes

The edge polytope of a finite graph G is the convex hull of the columns of its vertex-edge incidence matrix. We study extremal problems for this class of polytopes. For k ∈ {2, 3, 5}, we determine the maximal number of vertices of kneighborly edge polytopes up to a sublinear term. We also construct a family of edge polytopes with exponentially-many facets.

متن کامل

Efficiency Analysis Based on Separating Hyperplanes for Improving Discrimination among DMUs

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative technical efficiency for each member of a set of peer decision making units (DMUs) with multiple inputs and multiple outputs. The original DEA models use positive input and output variables that are measured on a ratio scale, but these models do not apply to the variables in which interval scale data can appe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2013

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2012.08.002